LakeSoul CDC Ingestion via Spark Streaming
1. LakeSoul CDC Pipeline
LakeSoul supports ingesting any source of CDC by transforming CDC markups to LakeSoul's own field.
There are two ways of CDC ingestion for LakeSoul: 1) Write CDC stream into Kafka and use spark streaming to transform and write into LakeSoul (already supported); 2) Use Flink CDC to directly write into LakeSoul.
In this demo, we'll demonstrate the first way. We'll setup a MySQL instance, use scripts to generate DB modifications and use Debezium to sync them into Kafka, and then into LakeSoul via Spark Streaming.
2. Setup MySQL
2.1 Create database and table
Create database cdc;
CREATE TABLE test(
id int primary key,
rangeid int,
value varchar(100)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
2.2 Use cdc benchmark generator:
We provide a mysql data generator for testing and benchmarking cdc sync. The generator is located under diretory examples/cdc_ingestion_debezium/MysqlBenchmark
.
- Modify mysqlcdc.conf as needed
user=user name of mysql
passwd=password of mysql
host=host of mysql
port=port of mysql - Insert data into table
# Inside () are comments of parameters, remove them before execution
bash MysqlCdcBenchmark.sh insert cdc(db name) test(table name) 10(lines to insert) 1(thread number) - Update data into table
bash MysqlCdcBenchmark.sh update cdc test id(primary key) value(column to update) 10(lines to update)
- Delete data from table
bash MysqlCdcBenchmark.sh delete cdc test 10(lines to delete)
3. Setup Kafka (Ignore this step if you already have Kafka running)
3.1 Install Kafka via K8s (https://strimzi.io/docs/operators/latest/deploying.html#deploying-cluster-operator-str):
kubectl create -f install/cluster-operator -n my-cluster-operator-namespace
kubectl apply -f examples/kafka/kafka-persistent-single.yaml
4. Setup Debezium (Ignore if you already have it)
4.1 Install Debezium
To quickly setup a running container of Debezium on K8s:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: dbz-pod-claim
spec:
accessModes:
- ReadWriteOnce
# replace to actual StorageClass in your cluster
storageClassName:
resources:
requests:
storage: 10Gi
---
apiVersion: v1
kind: Pod
metadata:
name: dbz-pod
namespace: dmetasoul
spec:
restartPolicy: Never
containers:
- name: dbs
image: debezium/connect:latest
env:
- name: BOOTSTRAP_SERVERS
# replace to actual kafka host
value: ${kafka_host}:9092
- name: GROUP_ID
value: "1"
- name: CONFIG_STORAGE_TOPIC
value: my_connect_configs
- name: OFFSET_STORAGE_TOPIC
value: my_connect_offsets
- name: STATUS_STORAGE_TOPIC
value: my_connect_statuses
resources:
requests:
cpu: 500m
memory: 4Gi
limits:
cpu: 4
memory: 8Gi
volumeMounts:
- mountPath: "/kafka/data"
name: dbz-pv-storage
volumes:
- name: dbz-pv-storage
persistentVolumeClaim:
claimName: dbz-pod-claim
Then apply this yaml file:
kubectl apply -f pod.yaml
4.2 Setup Debezium sync task
# remember to replace {dbzhost} to actual dbz deployment ip address
# replace database parameters accordingly
curl -X POST http://{dbzhost}:8083/connectors/ -H 'Cache-Control: no-cache' -H 'Content-Type: application/json' -d '{
"name": "cdc",
"config": {
"connector.class": "io.debezium.connector.mysql.MySqlConnector",
"key.converter": "org.apache.kafka.connect.json.JsonConverter",
"key.converter.schemas.enable": "false",
"value.converter": "org.apache.kafka.connect.json.JsonConverter",
"value.converter.schemas.enable": "false",
"tasks.max": "1",
"database.hostname": "mysqlhost",
"database.port": "mysqlport",
"database.user": "mysqluser",
"database.password": "mysqlpassword",
"database.server.id": "1",
"database.server.name": "cdcserver",
"database.include.list": "cdc",
"database.history.kafka.bootstrap.servers": "kafkahost:9092",
"database.history.kafka.topic": "schema-changes.cdc",
"decimal.handling.mode": "double",
"table.include.list":"cdc.test"
}
}'
Then check if sync task has been succcessfully created:
curl -H "Accept:application/json" dbzhost:8083 -X GET http://dbzhost:8083/connectors/
You could delete sync task after testing finished:
curl -i -X DELETE http://dbzhost:8083/connectors/cdc
5. Start Spark Streaming Sink to LakeSoul
5.1 Setup
Please refer to Quick Start on how to setup LakeSoul and Spark environment.
5.2 Start Spark Shell
Spark shell needs to be started with kafka dependencies:
./bin/spark-shell --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.3.2 --conf spark.sql.extensions=com.dmetasoul.lakesoul.sql.LakeSoulSparkSessionExtension --conf spark.sql.catalog.spark_catalog=org.apache.spark.sql.lakesoul.catalog.LakeSoulCatalog
For other required settings such as meta database connection, please refer to Setup Meta Env and Setup Spark
5.3 Create a LakeSoul Table
We'll create a LakeSoul table called MysqlCdcTest, which will sync with the MySQL table we just setup. The LakeSoul table also has a primary key id
, and we need an extra field op
to represent CDC ops and add a table property lakesoul_cdc_change_column
with op
field.
import com.dmetasoul.lakesoul.tables.LakeSoulTable
val path="/opt/spark/cdctest"
val data=Seq((1L,1L,"hello world","insert")).toDF("id","rangeid","value","op")
LakeSoulTable.createTable(data, path).shortTableName("cdc").hashPartitions("id").hashBucketNum(2).rangePartitions("rangeid").tableProperty("lakesoul_cdc_change_column" -> "op").create()
5.4 Start spark streaming to sync Debezium CDC data into LakeSoul
import com.dmetasoul.lakesoul.tables.LakeSoulTable
val path="/opt/spark/cdctest"
val lakeSoulTable = LakeSoulTable.forPath(path)
var strList = List.empty[String]
//js1 is just a fake data to help generate the schema
val js1 = """{
| "before": {
| "id": 2,
| "rangeid": 2,
| "value": "sms"
| },
| "after": {
| "id": 2,
| "rangeid": 2,
| "value": "sms"
| },
| "source": {
| "version": "1.8.0.Final",
| "connector": "mysql",
| "name": "cdcserver",
| "ts_ms": 1644461444000,
| "snapshot": "false",
| "db": "cdc",
| "sequence": null,
| "table": "sms",
| "server_id": 529210004,
| "gtid": "de525a81-57f6-11ec-9b60-fa163e692542:1621099",
| "file": "binlog.000033",
| "pos": 54831329,
| "row": 0,
| "thread": null,
| "query": null
| },
| "op": "c",
| "ts_ms": 1644461444777,
| "transaction": null
|}""".stripMargin
strList = strList :+ js1
val rddData = spark.sparkContext.parallelize(strList)
val resultDF = spark.read.json(rddData)
val sche = resultDF.schema
import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession}
// Specify kafka settings
val kfdf = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "kafkahost:9092")
.option("subscribe", "cdcserver.cdc.test")
.option("startingOffsets", "latest")
.load()
// parse CDC json from debezium, and transform `op` field into one of 'insert', 'update', 'delete' into LakeSoul
val kfdfdata = kfdf
.selectExpr("CAST(value AS STRING) as value")
.withColumn("payload", from_json($"value", sche))
.filter("value is not null")
.drop("value")
.select("payload.after", "payload.before", "payload.op")
.withColumn(
"op",
when($"op" === "c", "insert")
.when($"op" === "u", "update")
.when($"op" === "d", "delete")
.otherwise("unknown")
)
.withColumn(
"data",
when($"op" === "insert" || $"op" === "update", $"after")
.when($"op" === "delete", $"before")
)
.drop($"after")
.drop($"before")
.select("data.*", "op")
// upsert into LakeSoul with microbatch
kfdfdata.writeStream
.foreachBatch { (batchDF: DataFrame, _: Long) =>
{
lakeSoulTable.upsert(batchDF)
batchDF.show
}
}
.start()
.awaitTermination()
5.5 Read from LakeSoul to view synchronized data:
import com.dmetasoul.lakesoul.tables.LakeSoulTable
val path="/opt/spark/cdctest"
val lakeSoulTable = LakeSoulTable.forPath(path)
lakeSoulTable.toDF.select("*").show()